dotfiles/vscode/.vscode/extensions/ms-python.vscode-pylance-2024.7.1/dist/bundled/stubs/matplotlib/mlab.pyi
Errol Sancaktar 5f8db31398 alacritty
2024-07-15 17:06:13 -06:00

79 lines
2.3 KiB
Python

from typing import Callable, Literal, Sequence
import numpy as np
from ._typing import *
def window_hanning(x): ...
def window_none(x): ...
def detrend(
x: Sequence,
key: Literal["default", "constant", "mean", "linear", "none"] | Callable = ...,
axis: int = ...,
) -> Sequence: ...
def detrend_mean(x: Sequence, axis: int = ...) -> Sequence: ...
def detrend_none(x, axis: int = ...): ...
def detrend_linear(y: Sequence) -> Sequence: ...
def stride_windows(x: Sequence, n: int, noverlap: int = ..., axis: int = ...): ...
def psd(
x: Sequence,
NFFT: int = ...,
Fs: float = ...,
detrend: Literal["none", "mean", "linear"] | Callable = ...,
window: Callable | np.ndarray = ...,
noverlap: int = 0,
pad_to: int = ...,
sides: Literal["default", "onesided", "twosided"] = ...,
scale_by_freq: bool = ...,
) -> tuple[np.ndarray, np.ndarray]: ...
def csd(
x: ArrayLike,
y: ArrayLike,
NFFT: int = ...,
Fs: float = ...,
detrend: Literal["none", "mean", "linear"] | Callable = ...,
window: Callable | np.ndarray = ...,
noverlap: int = 0,
pad_to: int = ...,
sides: Literal["default", "onesided", "twosided"] = ...,
scale_by_freq: bool = ...,
) -> tuple[np.ndarray, np.ndarray]: ...
complex_spectrum = ...
magnitude_spectrum = ...
angle_spectrum = ...
phase_spectrum = ...
def specgram(
x: ArrayLike,
NFFT: int = ...,
Fs: float = ...,
detrend: Literal["none", "mean", "linear"] | Callable = ...,
window: Callable | np.ndarray = ...,
noverlap: int = 0,
pad_to: int = ...,
sides: Literal["default", "onesided", "twosided"] = ...,
scale_by_freq: bool = ...,
mode: str = ...,
) -> tuple[ArrayLike, ArrayLike, ArrayLike]: ...
def cohere(
x,
y,
NFFT: int = ...,
Fs: float = ...,
detrend: Literal["none", "mean", "linear"] | Callable = ...,
window: Callable | np.ndarray = ...,
noverlap: int = 0,
pad_to: int = ...,
sides: Literal["default", "onesided", "twosided"] = ...,
scale_by_freq: bool = ...,
) -> tuple[np.ndarray, np.ndarray]: ...
class GaussianKDE:
def __init__(self, dataset: ArrayLike, bw_method: str | Scalar | Callable = ...) -> None: ...
def scotts_factor(self): ...
def silverman_factor(self): ...
covariance_factor = ...
def evaluate(self, points) -> np.ndarray: ...