from typing import Callable, Literal, Sequence import numpy as np from ._typing import * def window_hanning(x): ... def window_none(x): ... def detrend( x: Sequence, key: Literal["default", "constant", "mean", "linear", "none"] | Callable = ..., axis: int = ..., ) -> Sequence: ... def detrend_mean(x: Sequence, axis: int = ...) -> Sequence: ... def detrend_none(x, axis: int = ...): ... def detrend_linear(y: Sequence) -> Sequence: ... def stride_windows(x: Sequence, n: int, noverlap: int = ..., axis: int = ...): ... def psd( x: Sequence, NFFT: int = ..., Fs: float = ..., detrend: Literal["none", "mean", "linear"] | Callable = ..., window: Callable | np.ndarray = ..., noverlap: int = 0, pad_to: int = ..., sides: Literal["default", "onesided", "twosided"] = ..., scale_by_freq: bool = ..., ) -> tuple[np.ndarray, np.ndarray]: ... def csd( x: ArrayLike, y: ArrayLike, NFFT: int = ..., Fs: float = ..., detrend: Literal["none", "mean", "linear"] | Callable = ..., window: Callable | np.ndarray = ..., noverlap: int = 0, pad_to: int = ..., sides: Literal["default", "onesided", "twosided"] = ..., scale_by_freq: bool = ..., ) -> tuple[np.ndarray, np.ndarray]: ... complex_spectrum = ... magnitude_spectrum = ... angle_spectrum = ... phase_spectrum = ... def specgram( x: ArrayLike, NFFT: int = ..., Fs: float = ..., detrend: Literal["none", "mean", "linear"] | Callable = ..., window: Callable | np.ndarray = ..., noverlap: int = 0, pad_to: int = ..., sides: Literal["default", "onesided", "twosided"] = ..., scale_by_freq: bool = ..., mode: str = ..., ) -> tuple[ArrayLike, ArrayLike, ArrayLike]: ... def cohere( x, y, NFFT: int = ..., Fs: float = ..., detrend: Literal["none", "mean", "linear"] | Callable = ..., window: Callable | np.ndarray = ..., noverlap: int = 0, pad_to: int = ..., sides: Literal["default", "onesided", "twosided"] = ..., scale_by_freq: bool = ..., ) -> tuple[np.ndarray, np.ndarray]: ... class GaussianKDE: def __init__(self, dataset: ArrayLike, bw_method: str | Scalar | Callable = ...) -> None: ... def scotts_factor(self): ... def silverman_factor(self): ... covariance_factor = ... def evaluate(self, points) -> np.ndarray: ...