dotfiles/vscode/.vscode/extensions/ms-python.vscode-pylance-2024.6.1/dist/bundled/stubs/sklearn/multioutput.pyi
Errol Sancaktar ff17c17e23 vscode
2024-06-14 09:31:58 -06:00

125 lines
4.9 KiB
Python

from abc import ABCMeta, abstractmethod
from numbers import Integral as Integral
from typing import ClassVar, Sequence, TypeVar
from numpy import ndarray
from scipy.sparse import spmatrix
from ._typing import ArrayLike, MatrixLike
from .base import (
BaseEstimator,
ClassifierMixin,
MetaEstimatorMixin,
RegressorMixin,
clone as clone,
is_classifier as is_classifier,
)
from .ensemble._forest import RandomForestRegressor
from .linear_model._logistic import LogisticRegression
from .model_selection import cross_val_predict as cross_val_predict
from .utils import check_random_state as check_random_state
from .utils._param_validation import HasMethods as HasMethods, StrOptions as StrOptions
from .utils.metaestimators import available_if as available_if
from .utils.multiclass import check_classification_targets as check_classification_targets
from .utils.parallel import Parallel as Parallel, delayed as delayed
from .utils.validation import check_is_fitted as check_is_fitted, has_fit_parameter as has_fit_parameter
MultiOutputClassifier_Self = TypeVar("MultiOutputClassifier_Self", bound="MultiOutputClassifier")
RegressorChain_Self = TypeVar("RegressorChain_Self", bound="RegressorChain")
_BaseChain_Self = TypeVar("_BaseChain_Self", bound="_BaseChain")
_MultiOutputEstimator_Self = TypeVar("_MultiOutputEstimator_Self", bound="_MultiOutputEstimator")
MultiOutputRegressor_Self = TypeVar("MultiOutputRegressor_Self", bound="MultiOutputRegressor")
ClassifierChain_Self = TypeVar("ClassifierChain_Self", bound="ClassifierChain")
import numpy as np
import scipy.sparse as sp
__all__ = [
"MultiOutputRegressor",
"MultiOutputClassifier",
"ClassifierChain",
"RegressorChain",
]
class _MultiOutputEstimator(MetaEstimatorMixin, BaseEstimator, metaclass=ABCMeta):
_parameter_constraints: ClassVar[dict] = ...
@abstractmethod
def __init__(self, estimator: RandomForestRegressor, *, n_jobs=None) -> None: ...
def partial_fit(
self: _MultiOutputEstimator_Self,
X: MatrixLike | ArrayLike,
y: MatrixLike,
classes: Sequence[ArrayLike] | None = None,
sample_weight: None | ArrayLike = None,
) -> _MultiOutputEstimator_Self: ...
def fit(
self: _MultiOutputEstimator_Self,
X: MatrixLike | ArrayLike,
y: MatrixLike,
sample_weight: None | ArrayLike = None,
**fit_params,
) -> _MultiOutputEstimator_Self | MultiOutputRegressor: ...
def predict(self, X: MatrixLike | ArrayLike) -> ndarray | spmatrix: ...
class MultiOutputRegressor(RegressorMixin, _MultiOutputEstimator):
feature_names_in_: ndarray = ...
n_features_in_: int = ...
estimators_: list[BaseEstimator] = ...
def __init__(self, estimator: BaseEstimator | RandomForestRegressor, *, n_jobs: None | int = None) -> None: ...
def partial_fit(
self: MultiOutputRegressor_Self,
X: MatrixLike | ArrayLike,
y: MatrixLike,
sample_weight: None | ArrayLike = None,
) -> MultiOutputRegressor_Self: ...
class MultiOutputClassifier(ClassifierMixin, _MultiOutputEstimator):
feature_names_in_: ndarray = ...
n_features_in_: int = ...
estimators_: list[BaseEstimator] = ...
classes_: ndarray = ...
def __init__(self, estimator: BaseEstimator, *, n_jobs: None | int = None) -> None: ...
def fit(
self: MultiOutputClassifier_Self,
X: MatrixLike | ArrayLike,
Y: MatrixLike,
sample_weight: None | ArrayLike = None,
**fit_params,
) -> MultiOutputClassifier_Self: ...
def predict_proba(self, X: MatrixLike) -> ndarray | list[ndarray]: ...
def score(self, X: MatrixLike, y: MatrixLike) -> float: ...
class _BaseChain(BaseEstimator, metaclass=ABCMeta):
_parameter_constraints: ClassVar[dict] = ...
def __init__(
self, base_estimator: LogisticRegression, *, order=None, cv=None, random_state=None, verbose: bool = False
) -> None: ...
@abstractmethod
def fit(
self: _BaseChain_Self, X: MatrixLike | ArrayLike, Y: MatrixLike, **fit_params
) -> _BaseChain_Self | ClassifierChain: ...
def predict(self, X: MatrixLike | ArrayLike) -> ndarray: ...
class ClassifierChain(MetaEstimatorMixin, ClassifierMixin, _BaseChain):
feature_names_in_: ndarray = ...
n_features_in_: int = ...
order_: list = ...
estimators_: list = ...
classes_: list = ...
def fit(self: ClassifierChain_Self, X: MatrixLike | ArrayLike, Y: MatrixLike) -> ClassifierChain_Self: ...
def predict_proba(self, X: MatrixLike | ArrayLike) -> ndarray: ...
def decision_function(self, X: MatrixLike) -> ndarray: ...
class RegressorChain(MetaEstimatorMixin, RegressorMixin, _BaseChain):
feature_names_in_: ndarray = ...
n_features_in_: int = ...
order_: list = ...
estimators_: list = ...
def fit(self: RegressorChain_Self, X: MatrixLike | ArrayLike, Y: MatrixLike, **fit_params) -> RegressorChain_Self: ...