dotfiles/vscode/.vscode/extensions/ms-python.vscode-pylance-2024.7.1/dist/bundled/stubs/sklearn/isotonic.pyi
Errol Sancaktar 5f8db31398 alacritty
2024-07-15 17:06:13 -06:00

71 lines
2.4 KiB
Python

from numbers import Real as Real
from typing import Callable, ClassVar, Literal, TypeVar
from numpy import ndarray
from scipy import interpolate as interpolate
from scipy.stats import spearmanr as spearmanr
from ._typing import ArrayLike, Float
from .base import BaseEstimator, RegressorMixin, TransformerMixin
from .utils import check_array as check_array, check_consistent_length as check_consistent_length
from .utils._param_validation import Interval as Interval, StrOptions as StrOptions
IsotonicRegression_Self = TypeVar("IsotonicRegression_Self", bound="IsotonicRegression")
# Authors: Fabian Pedregosa <fabian@fseoane.net>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Nelle Varoquaux <nelle.varoquaux@gmail.com>
# License: BSD 3 clause
import math
import warnings
import numpy as np
__all__ = ["check_increasing", "isotonic_regression", "IsotonicRegression"]
def check_increasing(x: ArrayLike, y: ArrayLike) -> bool: ...
def isotonic_regression(
y: ArrayLike,
*,
sample_weight: None | ArrayLike = None,
y_min: None | Float = None,
y_max: None | Float = None,
increasing: bool = True,
) -> ndarray | list[float]: ...
class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
increasing_: bool = ...
f_: Callable = ...
y_thresholds_: ndarray = ...
X_thresholds_: ndarray = ...
X_max_: float = ...
X_min_: float = ...
_parameter_constraints: ClassVar[dict] = ...
def __init__(
self,
*,
y_min: None | Float = None,
y_max: None | Float = None,
increasing: str | bool = True,
out_of_bounds: Literal["nan", "clip", "raise", "nan"] = "nan",
) -> None: ...
def fit(
self: IsotonicRegression_Self,
X: ArrayLike,
y: ArrayLike,
sample_weight: None | ArrayLike = None,
) -> IsotonicRegression_Self: ...
def transform(self, T: ArrayLike) -> ndarray: ...
def predict(self, T: ArrayLike) -> ndarray: ...
# We implement get_feature_names_out here instead of using
# `ClassNamePrefixFeaturesOutMixin`` because `input_features` are ignored.
# `input_features` are ignored because `IsotonicRegression` accepts 1d
# arrays and the semantics of `feature_names_in_` are not clear for 1d arrays.
def get_feature_names_out(self, input_features: None | ArrayLike = None) -> ndarray: ...
def __getstate__(self): ...
def __setstate__(self, state): ...