dotfiles/vscode/.vscode/extensions/ms-python.vscode-pylance-2024.7.1/dist/bundled/stubs/sklearn/dummy.pyi
Errol Sancaktar 5f8db31398 alacritty
2024-07-15 17:06:13 -06:00

89 lines
3.0 KiB
Python

from numbers import Integral as Integral, Real as Real
from typing import ClassVar, Literal, TypeVar
from numpy import ndarray
from numpy.random import RandomState
from ._typing import ArrayLike, Float, Int, MatrixLike
from .base import BaseEstimator, ClassifierMixin, MultiOutputMixin, RegressorMixin
from .utils import check_random_state as check_random_state
from .utils._param_validation import Interval as Interval, StrOptions as StrOptions
from .utils.multiclass import class_distribution as class_distribution
from .utils.validation import (
check_array as check_array,
check_consistent_length as check_consistent_length,
check_is_fitted as check_is_fitted,
)
DummyRegressor_Self = TypeVar("DummyRegressor_Self", bound="DummyRegressor")
DummyClassifier_Self = TypeVar("DummyClassifier_Self", bound="DummyClassifier")
# Author: Mathieu Blondel <mathieu@mblondel.org>
# Arnaud Joly <a.joly@ulg.ac.be>
# Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk>
# License: BSD 3 clause
import warnings
import numpy as np
import scipy.sparse as sp
class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):
sparse_output_: bool = ...
n_outputs_: int = ...
class_prior_: ndarray | list[ArrayLike] = ...
n_classes_: int | list[int] = ...
classes_: ndarray | list[ArrayLike] = ...
_parameter_constraints: ClassVar[dict] = ...
def __init__(
self,
*,
strategy: Literal["most_frequent", "prior", "stratified", "uniform", "constant", "prior"] = "prior",
random_state: RandomState | None | Int = None,
constant: None | str | ArrayLike | int = None,
) -> None: ...
def fit(
self: DummyClassifier_Self,
X: MatrixLike,
y: MatrixLike | ArrayLike,
sample_weight: None | ArrayLike = None,
) -> DummyClassifier_Self: ...
def predict(self, X: MatrixLike) -> ndarray: ...
def predict_proba(self, X: MatrixLike) -> ndarray | list[ndarray]: ...
def predict_log_proba(self, X: ArrayLike) -> ndarray | list[ndarray]: ...
def score(
self,
X: None | MatrixLike,
y: MatrixLike | ArrayLike,
sample_weight: None | ArrayLike = None,
) -> float: ...
class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
n_outputs_: int = ...
constant_: ndarray = ...
_parameter_constraints: ClassVar[dict] = ...
def __init__(
self,
*,
strategy: Literal["mean", "median", "quantile", "constant", "mean"] = "mean",
constant: float | None | ArrayLike | int = None,
quantile: float | None = None,
) -> None: ...
def fit(
self: DummyRegressor_Self,
X: MatrixLike,
y: MatrixLike | ArrayLike,
sample_weight: None | ArrayLike = None,
) -> DummyRegressor_Self: ...
def predict(self, X: MatrixLike, return_std: bool = False) -> ndarray | tuple[ndarray, ndarray]: ...
def score(
self,
X: None | MatrixLike,
y: MatrixLike | ArrayLike,
sample_weight: None | ArrayLike = None,
) -> Float: ...