dotfiles/vscode/.vscode/extensions/ms-python.vscode-pylance-2024.7.1/dist/bundled/stubs/sklearn/base.pyi
Errol Sancaktar 5f8db31398 alacritty
2024-07-15 17:06:13 -06:00

95 lines
3.0 KiB
Python

from collections import defaultdict as defaultdict
from typing import Any, ClassVar, Iterable, TypeVar
from numpy import ndarray
from ._config import get_config as get_config
from ._typing import ArrayLike, Float, Int, MatrixLike
from .metrics import accuracy_score as accuracy_score, r2_score as r2_score
from .utils._estimator_html_repr import estimator_html_repr as estimator_html_repr
from .utils._param_validation import validate_parameter_constraints as validate_parameter_constraints
from .utils._set_output import _SetOutputMixin
from .utils.validation import check_array as check_array, check_is_fitted as check_is_fitted, check_X_y as check_X_y
BaseEstimator_Self = TypeVar("BaseEstimator_Self", bound="BaseEstimator")
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause
import copy
import inspect
import platform
import re
import warnings
import numpy as np
def clone(estimator: BaseEstimator | Iterable[BaseEstimator], *, safe: bool = True) -> Any: ...
class BaseEstimator:
def get_params(self, deep: bool = True) -> dict: ...
def set_params(self: BaseEstimator_Self, **params) -> BaseEstimator_Self: ...
def __repr__(self, N_CHAR_MAX: int = 700) -> str: ...
def __getstate__(self): ...
def __setstate__(self, state) -> None: ...
class ClassifierMixin:
_estimator_type: ClassVar[str] = ...
def score(
self,
X: MatrixLike,
y: MatrixLike | ArrayLike,
sample_weight: None | ArrayLike = None,
) -> Float: ...
class RegressorMixin:
_estimator_type: ClassVar[str] = ...
def score(
self,
X: MatrixLike,
y: MatrixLike | ArrayLike,
sample_weight: None | ArrayLike = None,
) -> Float: ...
class ClusterMixin:
_estimator_type: ClassVar[str] = ...
def fit_predict(self, X: MatrixLike, y: Any = None) -> ndarray: ...
class BiclusterMixin:
def biclusters_(self): ...
def get_indices(self, i: Int) -> tuple[ndarray, ndarray]: ...
def get_shape(self, i: Int) -> tuple[int, int]: ...
def get_submatrix(self, i: Int, data: MatrixLike) -> ndarray: ...
class TransformerMixin(_SetOutputMixin):
def fit_transform(self, X: MatrixLike, y: None | MatrixLike | ArrayLike = None, **fit_params) -> ndarray: ...
class OneToOneFeatureMixin:
def get_feature_names_out(self, input_features: None | ArrayLike = None) -> ndarray: ...
class ClassNamePrefixFeaturesOutMixin:
def get_feature_names_out(self, input_features: None | ArrayLike = None) -> ndarray: ...
class DensityMixin:
_estimator_type: ClassVar[str] = ...
def score(self, X: MatrixLike, y: Any = None) -> float: ...
class OutlierMixin:
_estimator_type: ClassVar[str] = ...
def fit_predict(self, X: MatrixLike | ArrayLike, y: Any = None) -> ndarray: ...
class MetaEstimatorMixin:
_required_parameters: ClassVar[list] = ...
class MultiOutputMixin: ...
class _UnstableArchMixin: ...
def is_classifier(estimator: Any) -> bool: ...
def is_regressor(estimator: BaseEstimator) -> bool: ...
def is_outlier_detector(estimator: BaseEstimator) -> bool: ...