dotfiles/vscode/.vscode/extensions/ms-python.vscode-pylance-2024.7.1/dist/bundled/stubs/sklearn/multiclass.pyi
Errol Sancaktar 5f8db31398 alacritty
2024-07-15 17:06:13 -06:00

124 lines
4.3 KiB
Python

from numbers import Integral as Integral, Real as Real
from typing import ClassVar, TypeVar
from numpy import ndarray
from numpy.random import RandomState
from ._typing import ArrayLike, Float, Int, MatrixLike
from .base import (
BaseEstimator,
ClassifierMixin,
MetaEstimatorMixin,
MultiOutputMixin,
clone as clone,
is_classifier as is_classifier,
is_regressor as is_regressor,
)
from .metrics.pairwise import euclidean_distances as euclidean_distances
from .preprocessing import LabelBinarizer
from .utils import check_random_state as check_random_state
from .utils._param_validation import HasMethods as HasMethods, Interval as Interval
from .utils.metaestimators import available_if as available_if
from .utils.multiclass import check_classification_targets as check_classification_targets
from .utils.parallel import Parallel as Parallel, delayed as delayed
from .utils.validation import check_is_fitted as check_is_fitted
OneVsRestClassifier_Self = TypeVar("OneVsRestClassifier_Self", bound="OneVsRestClassifier")
OneVsOneClassifier_Self = TypeVar("OneVsOneClassifier_Self", bound="OneVsOneClassifier")
OutputCodeClassifier_Self = TypeVar("OutputCodeClassifier_Self", bound="OutputCodeClassifier")
# Author: Mathieu Blondel <mathieu@mblondel.org>
# Author: Hamzeh Alsalhi <93hamsal@gmail.com>
#
# License: BSD 3 clause
import array
import itertools
import warnings
import numpy as np
import scipy.sparse as sp
__all__ = [
"OneVsRestClassifier",
"OneVsOneClassifier",
"OutputCodeClassifier",
]
class _ConstantPredictor(BaseEstimator):
def fit(self, X, y): ...
def predict(self, X): ...
def decision_function(self, X): ...
def predict_proba(self, X): ...
class OneVsRestClassifier(MultiOutputMixin, ClassifierMixin, MetaEstimatorMixin, BaseEstimator):
feature_names_in_: ndarray = ...
n_features_in_: int = ...
label_binarizer_: LabelBinarizer = ...
classes_: ndarray = ...
estimators_: list[BaseEstimator] = ...
_parameter_constraints: ClassVar[dict] = ...
def __init__(self, estimator: BaseEstimator, *, n_jobs: None | Int = None, verbose: Int = 0) -> None: ...
def fit(
self: OneVsRestClassifier_Self,
X: MatrixLike | ArrayLike,
y: MatrixLike | ArrayLike,
) -> OneVsRestClassifier_Self: ...
def partial_fit(
self: OneVsRestClassifier_Self,
X: MatrixLike | ArrayLike,
y: MatrixLike | ArrayLike,
classes: None | ArrayLike = None,
) -> OneVsRestClassifier_Self: ...
def predict(self, X: MatrixLike | ArrayLike) -> ndarray: ...
def predict_proba(self, X: MatrixLike | ArrayLike) -> ndarray: ...
def decision_function(self, X: MatrixLike) -> ndarray: ...
@property
def multilabel_(self) -> bool: ...
@property
def n_classes_(self) -> int: ...
class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
feature_names_in_: ndarray = ...
n_features_in_: int = ...
pairwise_indices_: None | list = ...
classes_: ndarray = ...
estimators_: list[BaseEstimator] = ...
_parameter_constraints: ClassVar[dict] = ...
def __init__(self, estimator: BaseEstimator, *, n_jobs: None | Int = None) -> None: ...
def fit(self: OneVsOneClassifier_Self, X: MatrixLike | ArrayLike, y: ArrayLike) -> OneVsOneClassifier_Self: ...
def partial_fit(
self: OneVsOneClassifier_Self,
X: MatrixLike,
y: ArrayLike,
classes: None | ArrayLike = None,
) -> OneVsOneClassifier_Self: ...
def predict(self, X: MatrixLike | ArrayLike) -> ndarray: ...
def decision_function(self, X: MatrixLike) -> ndarray: ...
@property
def n_classes_(self) -> int: ...
class OutputCodeClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
feature_names_in_: ndarray = ...
n_features_in_: int = ...
code_book_: ndarray = ...
classes_: ndarray = ...
estimators_: list[BaseEstimator] = ...
_parameter_constraints: ClassVar[dict] = ...
def __init__(
self,
estimator: BaseEstimator,
*,
code_size: Float = 1.5,
random_state: RandomState | None | Int = None,
n_jobs: None | Int = None,
) -> None: ...
def fit(self: OutputCodeClassifier_Self, X: MatrixLike | ArrayLike, y: ArrayLike) -> OutputCodeClassifier_Self: ...
def predict(self, X: MatrixLike | ArrayLike) -> ndarray: ...