from collections import defaultdict as defaultdict from typing import Any, ClassVar, Iterable, TypeVar from numpy import ndarray from ._config import get_config as get_config from ._typing import ArrayLike, Float, Int, MatrixLike from .metrics import accuracy_score as accuracy_score, r2_score as r2_score from .utils._estimator_html_repr import estimator_html_repr as estimator_html_repr from .utils._param_validation import validate_parameter_constraints as validate_parameter_constraints from .utils._set_output import _SetOutputMixin from .utils.validation import check_array as check_array, check_is_fitted as check_is_fitted, check_X_y as check_X_y BaseEstimator_Self = TypeVar("BaseEstimator_Self", bound="BaseEstimator") # Author: Gael Varoquaux # License: BSD 3 clause import copy import inspect import platform import re import warnings import numpy as np def clone(estimator: BaseEstimator | Iterable[BaseEstimator], *, safe: bool = True) -> Any: ... class BaseEstimator: def get_params(self, deep: bool = True) -> dict: ... def set_params(self: BaseEstimator_Self, **params) -> BaseEstimator_Self: ... def __repr__(self, N_CHAR_MAX: int = 700) -> str: ... def __getstate__(self): ... def __setstate__(self, state) -> None: ... class ClassifierMixin: _estimator_type: ClassVar[str] = ... def score( self, X: MatrixLike, y: MatrixLike | ArrayLike, sample_weight: None | ArrayLike = None, ) -> Float: ... class RegressorMixin: _estimator_type: ClassVar[str] = ... def score( self, X: MatrixLike, y: MatrixLike | ArrayLike, sample_weight: None | ArrayLike = None, ) -> Float: ... class ClusterMixin: _estimator_type: ClassVar[str] = ... def fit_predict(self, X: MatrixLike, y: Any = None) -> ndarray: ... class BiclusterMixin: def biclusters_(self): ... def get_indices(self, i: Int) -> tuple[ndarray, ndarray]: ... def get_shape(self, i: Int) -> tuple[int, int]: ... def get_submatrix(self, i: Int, data: MatrixLike) -> ndarray: ... class TransformerMixin(_SetOutputMixin): def fit_transform(self, X: MatrixLike, y: None | MatrixLike | ArrayLike = None, **fit_params) -> ndarray: ... class OneToOneFeatureMixin: def get_feature_names_out(self, input_features: None | ArrayLike = None) -> ndarray: ... class ClassNamePrefixFeaturesOutMixin: def get_feature_names_out(self, input_features: None | ArrayLike = None) -> ndarray: ... class DensityMixin: _estimator_type: ClassVar[str] = ... def score(self, X: MatrixLike, y: Any = None) -> float: ... class OutlierMixin: _estimator_type: ClassVar[str] = ... def fit_predict(self, X: MatrixLike | ArrayLike, y: Any = None) -> ndarray: ... class MetaEstimatorMixin: _required_parameters: ClassVar[list] = ... class MultiOutputMixin: ... class _UnstableArchMixin: ... def is_classifier(estimator: Any) -> bool: ... def is_regressor(estimator: BaseEstimator) -> bool: ... def is_outlier_detector(estimator: BaseEstimator) -> bool: ...